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Due to an extremely rugged structure of the free energy landscape, the determination of spin-glass ground
states is among the hardest known optimization problems, found to be AP hard in the most general case.
Owing to the specific structure of local (free) energy minima, general-purpose optimization strategies perform
relatively poorly on these problems, and a number of specially tailored optimization techniques have been
developed in particular for the Ising spin glass and similar discrete systems. Here, an efficient optimization
heuristic for the much less discussed case of continuous spins is introduced, based on the combination of an
embedding of Ising spins into the continuous rotators and an appropriate variant of a genetic algorithm.
Statistical techniques for insuring high reliability in finding (numerically) exact ground states are discussed,
and the method is benchmarked against the simulated annealing approach.
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I. INTRODUCTION

Complex (free) energy landscapes featuring a multitude of
local minima separated by energy barriers are common in
problems of statistical mechanics, chemical, and biophysics,
consequently often subsumed under the label of “complex
systems,” be it biopolymers, structural, or spin glasses [1].
The consequences of this deviation from the classical text-
book situation of a potential energy with at most a handful of
metastable states are dramatic for the static and dynamic be-
havior of the affected systems in nature, including, for in-
stance, “memory” and “rejuvenation” effects in spin glasses
[2], but no less pronounced for the theoretical investigation
of models of such situations with computational simulation
or optimization methods: here, model systems become
trapped in local minima for exponentially long times, pre-
venting an equilibration in finite-temperature simulations [2]
or lead to a vastly increased effort needed for an optimization
procedure to yield ground states with finite probability [3].
Clearly, the presence of many local minima alone is not suf-
ficient to pose serious problems for any optimization method
more elaborate than a strictly downhill, local search. Rather,
it is the organization of minima and interjacent barriers that
is the cause for the trapping phenomena, and distinguishes
the milder from the more severe cases [1]. While, for in-
stance, many typical biopolymers exhibit landscapes with
moderate barriers separating minima of substantially differ-
ent energies, with a “funneling” towards a unique global
minimum [4], disordered and frustrated magnetic systems
are rather characterized by many (quasi-) degenerate minima
close to the ground state(s) separated by large barriers, lead-
ing to much more severe effects of metastability and slow
relaxation [5,6].

Independent of this connection between the structure of
the energy landscape and the real or artificial (Monte Carlo
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or optimization) dynamics of a frustrated system, the prob-
lem of finding ground states or, alternatively, partition func-
tions, of the corresponding models has been considered as a
problem in the field of computational complexity [7]. In
computer science, traditionally mostly the “worst case” com-
plexities of algorithms have been considered, i.e., the
asymptotic scaling of the run time T(N) with the problem
size N for the “hardest” set of input data within the class of
allowed inputs, Ty, (N) [8]. Quite generally, problems with
an asymptotically polynomial form of T,,(N) are consid-
ered tractable, whereas an exponential divergence for the
best known algorithm is associated with intractability. Para-
digmatic results have been found for decision problems with
“yes” or “no” answers, for which a powerful classification
scheme has been established: problems with a known poly-
nomial algorithm are grouped in P, whereas a more general
class of problems for which the correctness of a solution can
be checked in polynomial time is denoted N'P. The potential
hardness of the latter must then exclusively result from the
exponential growth of the search space, such that a theoret-
ical computer capable of infinite parallelism can solve such
problems in polynomial time [7]. The hardest AP problems,
namely those whose polynomial solution would imply poly-
nomial complexity for all other NP problems, are termed
NP complete, which includes most of the well-known hard
problems such as the traveling salesman problem or the sat-
isfiability problem. While it is possible that all such problems
might have polynomial-time solutions, i.e., P=AP, this is
now considered to be extremely unlikely, and A/P problems
almost certainly require an exponential computational effort
[8]. This classification extends to optimization (instead of
decision) problems where, specifically, those where the prob-
lem of deciding about the existence of a solution better than
a given bound in the cost function is NP complete, are
termed NP hard.
For the Ising spin glass with Hamiltonian [9]
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the problems of computing ground states or the partition
function are known to be AP hard in space dimensions d
=3 or for two-dimensional (2D) systems in a magnetic field
[10,11]. The zero-field 2D problem, on the other hand, is
tractable in polynomial time [12-14]. In particular, ground
states on planar graphs can be found by means of the map-
ping to a minimum-weight perfect matching problem, as dis-
cussed below in Sec. II. While thus, generically, spin-glass
ground-state problems are hard, one has to keep in mind that
this classification concerns the worst-case behavior among
all possible realizations of couplings J;; of the chosen distri-
bution (e.g., bimodal or Gaussian), whereas it is, for in-
stance, simple to specify the ground state of the purely fer-
romagnetic system with J;;=J,> 0, which also belongs to the
allowed Jij realizations. Hence, relevant for actual computa-
tions is also the average complexity, depending on a chosen
probability distribution P({/;;}) of couplings. Within the
spin-glass phase, however, also this mean complexity is ex-
ponential for known exact approaches to the problem in d
>2 [15]. Correspondingly, heuristic optimization techniques
for finding low-lying or ground states are called for. These
might include generic approaches, such as simulated anneal-
ing [16], multicanonical [17], or parallel tempering [18]
Monte Carlo simulations, but also a number of methods spe-
cifically tailored to the problem [19-23], the latter generally
showing the best performance [3,24]. Insofar as these meth-
ods make use of some type of relaxational (quasi-) dynamics,
they to some extent also suffer from the slowness of relax-
ation entailed by the structure of free-energy minima and
separating barriers. It should be pointed out, however, that
such slow dynamics is not equivalent to hardness in the clas-
sifications of computational complexity [25]. Instead, slower
than power-law relaxation of local dynamics also occurs in
computationally polynomial systems [5], such as the Ising
spin-glass model in two dimensions [12]. The stochastic na-
ture of most of these approaches requires a different descrip-
tion of their time complexity or efficiency: since such meth-
ods do not guarantee to yield ground states, one should now
rather ask for the worst case or mean computational effort to
end up in a ground state with an a priori prescribed success
probability p, (for p,=0.95, say), or for the distribution (over
disorder realizations) of such minimal running times at fixed
p,- A framework for such considerations will be developed
below in Sec. IV. Ground-state searches for spin-glass sys-
tems are additionally complicated by an extraordinarily
broad distribution of “hardness” over disorder samples,
which draws into question the treatment of all samples with
constant computational effort. In this context, it is discussed
below in how far properties of individual disorder samples
can serve as hardness indicators and hence an automatic ef-
fort adaptation can be achieved.

Ising spin-glass ground states have been considered with
the aim to understand the nature of the low-temperature
phase while avoiding the equilibration problems of finite-
temperature simulations. Ground-state computations for sys-
tems with different boundary conditions or with some fixed
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spins allow for the direct investigation of domain-wall and
droplet defects, whose properties should reveal in how far
finite-dimensional spin glasses are correctly described by
mean-field theory (see Ref. [26] for a review of recent de-
velopments). The polynomially tractable 2D case, in particu-
lar, has provided a fruitful playground for testing theoretical
pictures of the spin-glass phase, and remains a topic of active
research to date [27-30]. In terms of spin-glass phases real-
ized experimentally, in particular in the multitude of systems
with frustrating lattice structures that have come into focus
more recently [31], systems with continuous spins are prob-
ably more common than the extremely anisotropic Ising
case. In computing ground states for such systems, modeled,
say, by the Edwards-Anderson Hamiltonian (1) with continu-
ous O(n) spins §;, one leaves the relatively well-understood
field of combinatorial optimization. To my understanding,
nothing is known about the (suitably generalized) computa-
tional complexity of this problem. It is easily seen [3,8],
however, that already the g-state Potts spin glass corresponds
to a multiterminal flow problem known to be NP hard even
in two dimensions for ¢g=3 [32]. Nothing would seem to
indicate that the XY case of continuous planar spins, or the
Heisenberg model of O(3) rotators could be easier computa-
tionally than the discrete Potts approximation. With the ex-
ception of a study of the XY spin glass in the Coulomb gas
representation [33], all studies of low-lying metastable states
in O(n) spin glasses (with n> 1) have relied on variants of a
simple spin-quench technique corresponding to a 7=0
Monte Carlo simulation with local updates [34-37] (apart
from studies of the computationally simpler case of the n
— oo spherical spin glass [38]). This spin quench follows
from noting that a necessary condition for metastability is
that each spin be parallel to its local molecular field,

Si”hi:EJiijv (2)
J

leading to the prescription of an iterative alignment of single
spins S; parallel to k,. In contrast to the investigations of the
Ising spin glass, none of these approaches have allowed one
to find numerically exact ground states with a reasonably
high probability, such that, instead, effectively the properties
of some set of metastable states with unclear relation to the
ground-state behavior have been found and investigated. To
improve on this, it is proposed here to combine exact
ground-state computations of Ising variables embedded into
the continuous spins with a specially tailored genetic algo-
rithm exploiting the locally rigid cluster structure of meta-
stable spin configurations [39]. This results in an efficient
approach for ground-state computations of continuous-spin
systems on planar graphs, which is tested and assessed here
for the case of the bimodal XY spin glass on the square lat-
tice, where numerically exact ground states can be found
with high reliability for systems up to about 30X 30 spins
using currently available computational resources. Implica-
tions of these results for the nature of the low-temperature
phase of this model have been discussed elsewhere [39,40].

The rest of the paper is organized as follows. Section II is
devoted to a description of the embedded matching tech-
nique for continuous spins, while in Sec. III the combination
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of this approach with a genetic algorithm with cluster ex-
change is discussed. In Sec. IV, the performance of this ap-
proach for the 2D XY spin glass is investigated in terms of a
detailed statistical analysis, focusing on the large variations
between disorder replica and offering a standardized ap-
proach of “quality assurance” for stochastic optimization al-
gorithms. An exhaustive benchmarking of the approach
against general-purpose techniques is not feasible. At least,
however, results comparing to the simple spin-quench used
before and a more elaborate simulated annealing approach
are presented in some detail. Finally, Sec. V contains my
conclusions.

II. EMBEDDED MATCHING

For attacking the ground-state problem of continuous spin
glasses in two dimensions, inspiration is taken from the poly-
nomial solution of the Ising problem, which is hence de-
scribed first, and then adapted to continuous spins via an
embedding of Ising variables.

A. Ising ground states as perfect matchings

The polynomial complexity of the 2D Ising spin glass
allows for the formulation of efficient algorithms for finding
ground states and computing the partition function. A num-
ber of different techniques has been established for the cal-
culation of the latter [10,13,14], mostly relying on the com-
putation of Pfaffians, but these will not be needed here.
Computations of ground states rest on the concept of frus-
trated loops introduced by Toulouse [41]: in the presence of
couplings J;; of either sign, for each closed curve along lat-
tice links touching an odd number of antiferromagnetic
bonds (J;;<<0), one cannot find a spin configuration satisfy-
ing all pair interactions, i.e., J;;S;S; <0 for at least one (“bro-
ken”) edge. Hence, the presence of such loops is responsible
for the excess of the ground-state energy of the spin glass
above the unfrustrated value Egy=—Z2;;|J;|. Due to the con-
tractibility of all loops on a planar graph, in this case it
suffices to concentrate on the frustration of the plaquettes,
i.e., the elementary faces of the lattice [12]. This is illustrated
by the marking of frustrated plaquettes for the square lattice
in Fig. 1. For each plaquette [1,, define the frustration func-
tion [41]

o = ] sgnJ;==x1, (3)
" Gjen,

such that (I)Dn=_1 if and only if [J, is frustrated. By this
definition, in a configuration of the Ising spins each frus-
trated plaquette must have an odd number (1 or 3 for the
square lattice) of broken bonds, whereas an unfrustrated
plaquette is surrounded by an even number of broken bonds
(0, 2, or 4 for the square lattice). Bonds drawn dual to the
broken bonds then connect to form energy strings starting
and terminating in frustrated plaquettes, cf. the sketch in the
upper panel of Fig. 1. The excess energy is
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FIG. 1. (Color online) Transformation of the Ising ground-state
calculation on the square lattice to a matching problem. Upper
panel: Frustrated plaquettes (marked by small squares) have an odd
number of antiferromagnetic (bold) bonds. The set of broken bonds
forms a collection of lines on the dual lattice (shaded, gray lines).
Lower panel: a ground state of the system is given by a minimum-
weight perfect matching of frustrated plaquettes. The dashed line
indicates an alternating cycle along which an exchange of matched
and unmatched edges yields another perfect matching.

1
E(E —Epy) = Wstring = 2 |Jl'j ’ )

strings

and a ground state corresponds to a collection of strings of
minimum weight W,,. Since, on a planar graph, closed
loops of dual bonds can be contracted away, they cannot
occur in a ground state, which hence corresponds to a
minimum-weight  perfect matching of the frustrated
plaquettes. This is illustrated in the lower panel of Fig. I.
The planarity of the lattice ensures that each such matching
corresponds to a valid spin configuration [12].

Following the above discussion, this matching problem is
defined on the complete graph G=F X F on the set F of
frustrated plaquettes. Each of the |&|=|F||F~-1| edges e,
=(f,n.f,) carries a weight
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W(e,) =min X, |7, (5)

Yimn (i,]) € Yy

corresponding to the minimum weight of all paths v,,, on the
(original) lattice connecting the plaquettes f,, and f,. Hence
an auxiliary minimum-cost path problem needs to be solved
as an input to the matching calculation. This is most effi-
ciently achieved by an appropriate implementation of Dijk-
stra’s algorithm with O(|€|In|£|) complexity, or, for the case
of a bimodal P(J;j) where |J;;| =J, for all edges, by a simple
breadth-first search [42]. Since there is an even number of
frustrated plaquettes [78], a perfect matching on G can al-
ways be found. A polynomial algorithm for the matching
problem on general graphs has been proposed by Edmonds
[43]. Tt proceeds by successively identifying augmenting
paths in the matching graph, i.e., cycles of alternating
matched and unmatched edges such that an exchange
matched < unmatched decreases the overall weight. This is
illustrated by a cycle in the original lattice in the lower panel
of Fig. 1. The complexity of the original implementation is
O(|F?|£|). The present implementation is based on the
“Blossom IV” matching algorithm of Cook and Rohe incor-
porating many improvements developed in the combinatorial
optimization literature after Edmonds’ original proposal [44].

Given a solution to the matching problem, a correspond-
ing spin configuration is found by arbitrarily choosing the
orientation of one spin and successively implementing the
satisfaction constraints expressed by the perfect matching via
selecting spin orientations in a breadth-first search emanating
from the chosen starting point. Note that, depending on the
distribution of couplings J;;, neither the solution of the
matching problem nor the mapping back to spin configura-
tions needs to be unique [45]: if some edges in the matching
problem have the same weight, there could be different
matchings of minimum weight. On the other hand, also the
notion of minimum-weight paths on the original square lat-
tice is not necessarily unique, and more than one path be-
tween two frustrated plaquettes could be of minimal weight.
Finally, each configuration of energy strings corresponds to
two different spin states, related by spin inversion. This gen-
erally leads to a large ground-state degeneracy for discrete
and rational distributions P({Jij}), but a unique ground state,
e.g., for the Gaussian case [46]. For the complete graph G,
the time complexity of Edmonds’ implementation would be
O(|F*), corresponding to O(L?) for a L X L lattice. Although
this is polynomial, further improvements are highly desirable
to reduce the rather large exponent and enable treatment of
reasonably sized problem instances. This can be achieved by
a thinning of the complete graph G: a matching of frustrated
plaquettes in the ground state becomes more and more un-
likely with increasing weight of the path connecting them,
and such large-weight edges can consequently be disre-
garded. Suitable cutoff parameters depend on the distribution
of J;;, and have to be tested thoroughly. For the implemen-
tation used here, cutoffs at fixed maximum path weight and
conditions on the minimum vertex degree in the matching
graph have been employed with comparable success.

B. Embedded matching for continuous spins

For continuous spins, the notion of plaquette frustration
stays meaningful, since it is a property of the bond configu-
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FIG. 2. (Color online) Embedding of Ising spins into the con-
tinuous rotators S; via decomposition with respect to a direction r in
spin space.

ration alone. The transformation to a matching problem,
however, is restricted to discrete Ising spins. To leverage the
tractability of the Ising case for the treatment of continuous-
spin systems, an embedding of Ising spins into the continu-
ous rotators is employed. To this end, consider an arbitrary
direction r, |r| =1, in spin space common to all lattice sites,
and decompose the O(n) spins S; of Eq. (1) as Sl~=S|i|+Sii
=(Si~r)r+SiL, cf. the illustration in Fig. 2. This induces a
decomposition H="H"l+H"* with

Hl=-3 T, (6)
(i.j)

where € =sgn(S;-r), and where the effective couplings jl’j are
given by

Hence, with respect to reflections of the spins S; along the
plane defined by r, the signs € are Ising variables (cf. Fig.
2), and the embedded Hamiltonian (6) is that of an Ising
model. Note that with respect to these reflections S;—S;
—2(S;-r)r, the perpendicular part H"~ is invariant and thus
does not contribute to the embedded dynamics. A similar
embedding of Ising variables has been used to formulate a
cluster-update Monte Carlo algorithm for continuous spins
[47].

Updating the effective Ising variables €,+>—¢; via plane
reflections S;—S,—2(S;-r)r, a ground state of the Hamil-
tonian H"l of Eq. (6) can be found, for instance, using the
transformation to a matching problem outlined above. Note
that since sgn %zsgn J;j according to Eq. (7), the frustration
function CIDDn does not depend on the embedding direction r,
and only the weights of the matching graph G must be up-
dated for each embedded matching computation. The rota-
tional symmetry of the O(n) Hamiltonian (1) can then be
recovered by a random sampling over different embedding
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directions r. This leads to the following algorithm:

procedure EMBEDDEDMATCHING({S;},7)
for j«—1,7 do

choose random direction r;

1:

2

3

4 determine ground state &/ of H'/l(e)
5: for i—1,L> do

6 if €+ &/ then

7 8;—8;=2(S;-r)r;
8 end if

9 end for

10: end for

11: end procedure

For each direction r, it holds that H=H"l({€})+H"*
=H"I({&})+H", where & is the ground state configuration
of the embedded Ising model. Consequently, the embedded
matching procedure corresponds to a strictly downhill mini-
mization approach. If H is in a ground state, H"l({e})="H
—H"* must be in a ground state for each r as well. Con-
versely, however, H"”({ef}) being in a ground state for each r
does not guarantee global minimum energy for the full H.

This is due to the fact that the embedded couplings .7; of Eq.
(7) depend on the spin configuration {S;} and hence on the
history of previous embedding matching runs. As a conse-
quence, the dynamics of {S;} induced by the embedded
matching procedure has metastable states [79]. The number
of metastable states is far less, however, than for the local
spin-quench approach of Eq. (2), since for each direction r a
global minimum is found: while 7/ converges to a locally
spin-flip stable state (otherwise a direction r could be found,
for which embedded Ising minimization would lead to re-
flections of one or more spins), not every such locally stable
state is metastable with respect to the embedded matching
procedure (because the embedded Ising system for some di-
rection r could be metastable instead of globally optimal).
It is found numerically that the sequence {E;} of energies
of the embedded matching approach always converges. As a

consequence of the dependency of .7,’1 of Eq. (7) on {S;}, the
limit E,, depends on the particular sequence {r,,r,,...} of
chosen directions. Figure 3 shows a histogram of energies
found from the embedded matching approach with a number
of different random starting configurations and different se-
ries of embedding directions for a particular 24 X 24 sample
of the 2D bimodal XY spin glass. For comparison, a corre-
sponding histogram for the local spin-quench method of Eq.
(2) is also shown. It is apparent that the average energy of
metastable states is lower for the embedded matching tech-
nique, and this behavior is found to survive averaging over
the random couplings {/;;}. Nevertheless, the probability for
converging to a ground state is apparently very small for the
system size considered, cf. Fig. 3. One might speculate that
this shortcoming is connected to the fact that only reflections
of spins along a plane, i.e., improper rotations, are allowed
updates in this approach: if the intermediate, improperly ro-
tated configurations connecting a state to another, properly
rotated state of lower energy have higher energy, they form a
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FIG. 3. (Color online) Histograms of energies of metastable
states of a 24X 24 sample of the +J XY spin glass on the square
lattice as found from 1000 independent runs of the embedded
matching technique compared to results of a local spin quench. The
onset of the hatched area to the right indicates the ground-state
energy of this sample.

barrier which cannot be overcome by a strictly downhill pro-
cedure. The only other transformation R besides plane re-
flections allowing for an Ising type symmetry R’=id are
point inflections S;— —S;. The embedded matching technique
can be extended to include these transformations. Their in-
clusion, however, is not found to remove significantly many
barriers, such that this approach is not further considered
here [80].

III. BOND-ENERGY DIFFERENCE CROSSOVER AND
GENETIC MATCHING

Although an important improvement over the local spin
quench approach (2), embedded matching alone is not suffi-
cient for reliably finding ground states. Further advances are
possible by an understanding of the structure of metastable
states exploited in a suitably tailored genetic algorithm.

A. Rigidity and domain structure

To understand the mechanism of metastability in the em-
bedded matching approach and develop a strategy for over-
coming it, one needs to take into account some features of
the low-temperature phase of spin glasses. While there is no
long-range order, the freezing of spin orientations corre-
sponds to some short-range order, expressed in a nonzero
range of correlations [2]. Consequently, at low temperatures
spins are rather rigidly locked together locally, and their ori-
entation can only be changed (at low, but generally nonzero
energies) by a rigid O(n) rotation of a cluster of spins [48].
Therefore, the manifold of internal states (i.e., the parameter
space of the relevant order parameter) is described by the full
orthogonal group O(n), in contrast to the case of homoge-
neous magnets, where the global magnetization confines the
internal states to the quotient space SO(n)/SO(n—1)=S5",
i.e., an n-dimensional unit sphere [49,50]. Such spin clusters
hence behave similar to solid n-dimensional bodies. Note,
however, that their O(n) rotation is not in general a zero
mode, but a low-energy excitation. The existence of such
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clusters could recently be explicitly revealed utilizing the
genetic embedded matching approach for the planar spin
glass in two dimensions [39,40]. This symmetry also deter-
mines the topologically stable defects in spin glasses: as in
ferromagnets, they are determined by the homotopy groups
of the internal space, here O(n). For planar rotators, for in-
stance, in addition to vortices (resp. vortex lines) also present
in the homogeneous case, this framework predicts domain
walls, which can be directly observed in the form of chiral
walls for the (two-dimensional) XY spin glass [40,51]. Con-
sequently, some important classes of low-energy excitations
in continuous spin glasses are as follows:

(1) Rigid O(n) rotations of spin domains.
(2) Topological defects: domain walls, vortices, etc.
(3) Smooth, spin-wave excitations.

In the context of ground-state searches, spin waves can be
easily removed by local relaxation techniques (see the dis-
cussion below in Sec IIT B). Some of the topological defects,
such as domain walls, can be composed out of a sequence of
domain rotations, such that I concentrate on this first type of
excitation here. Note that the given classification is not
meant to be exhaustive, i.e., it does not express a prejudice as
to whether the asymptotic low-energy excitations in spin
glasses are droplets [52,53], mean-field-like extended defects
[54], or “sponges” [55], for instance. It is, instead, only used
as a guideline for the identification of appropriate metavari-
ables in the formulation of an efficient ground-state search
heuristic.

Given that typical metastable states differ by rigid O(n)
rotations of domains, an explicit implementation of such ro-
tations in an optimization heuristic enables it to perform a
search directly on the space of metastable states. Direct in-
spection of the transformations connecting metastable states
in continuous-spin glasses show that this domain structure
indeed is a valid description, see Refs. [40,51,56]. Note that
the concept of such domains is a relative one, i.e., the do-
main decomposition of a metastable configuration can only
be determined with respect to other metastable states. In par-
ticular, a domain decomposition may be performed for a pair
of configurations, identifying the set of O(n) rotations map-
ping them onto each other. This might be achieved by deter-
mining, by a singular-value decomposition, locally averaged
rotation matrices connecting the configurations [40,56].
Here, a (computationally) simpler approach is chosen by not-
ing that the O(n) symmetry of the Hamiltonian (1) ensures
that for each such domain all energies E;;=—J;;S;-S; of bonds
in the interior are invariant, whereas the energies carried by
bonds crossing the domain boundary change due to local
mismatches of the surface spins of the rotated domain and its
environment. Some of these changes will be of spin-wave
type and hence will have been relaxed away once metasta-
bility has been reached again. Some differences, however,
remain, giving a handle on domain identification. Conse-
quently, for a pair («,B) of metastable configurations one
might consider the bond energy differences (BEDs)

[AESP| = 17,87 8¢~ P SP). (8)

The distribution of BEDs is depicted for a pair of metastable
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FIG. 4. (Color online) Relative domain decomposition of meta-
stable states of the two-dimensional XY spin glass. (a) Density plot
of bond energy differences (8) for two metastable states of the em-
bedded matching method for a given 24 X 24 disorder sample. (b)
Cluster decomposition resulting from the Hoshen-Kopelman algo-
rithm with clustering rule (9) and cutoff parameter k*#=0.30%5,
~(.05.

states of the 2D XY spin glass in Fig. 4(a), showing clear
structures of rigid domains. Defining a domain boundary by
a BED exceeding a threshold value, i.e.,

|AEP) > kP, 9)

a domain decomposition can be performed, for instance, with
the Hoshen-Kopelman algorithm [57]. This is illustrated in
Fig. 4(b) for the BEDs of Fig. 4(a). The cutoff parameter
k%P is chosen here of the order of the total variation of BEDs
over the whole sample, i.e., proportional to the standard de-
viation o8, to accommodate differences between disorder
realizations as well as metastable states of largely varying
energies. Since these domains are merely utilized for a more
efficient ground-state search, I do not have to bother here
with the question of whether there is a precisely defined
characteristic length associated with such domains [56], in-
dependent of the size of the system, as having k%f~ o5
detects the length(s) appropriate to the sample at hand auto-
matically.

B. Genetic matching

Embedded matching in combination with domain decom-
position of configurations with BED clustering allows opti-
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mization directly on the space of metastable states of the
embedded matching method. This already corresponds to an
enormous reduction in the size of the phase space. The
metaoptimization on metastable states is performed here uti-
lizing a hybrid genetic algorithm, although variants based on
other global optimization strategies such as simulated an-
nealing are conceivable as well. Genetic algorithms [58]
mimic natural evolution by maintaining a population of can-
didate solutions, which is evolved in generations by a pro-
cess involving the crossover and mutation of solutions fol-
lowed by a selection of members with higher fitness, i.e.,
lower energy for the case of ground-state computations con-
sidered here. In the canonical form of genetic algorithm, so-
lutions are represented by bit strings in a binary representa-
tion and crossover and mutation correspond to the random
exchange of bits between solutions and random bit flips, re-
spectively [58]. In this form, genetic algorithms have been
applied to the Ising spin glass, but, unless for very small
systems, true ground states could not be found with high
reliability [59,60]. Only hybrids combining genetic crossover
with some downhill optimization procedure such as local
spin flips or the “cluster-exact approximation” [19], restrict-
ing the search space to metastable states, led to more suc-
cessful approaches [20,61].

Although widely and successfully employed, there is no
theoretically sound framework for designing efficient genetic
algorithms [58], such that their construction rests on heuristic
strategies and additional insight specific to the problem at
hand. Generally, one strives to achieve a balance between
fast convergence to an optimum answer and the upholding of
genetic diversity throughout the “evolution” (which, in turn,
tends to slow down convergence), in order not to miss the
global optimum. The choice of crossover operation appears
to be most important in this context. In the present work,
instead of randomly exchanging single spins, the BED clus-
ter decomposition is employed to exchange domains of rigid
spins between solutions. This has the important advantage of
retaining the high degree of optimization already found from
the embedded matching technique inside of the domains and
directly operating on the space of variables relevant for the
construction of metastable states. The domain decomposition
can be performed directly with the “parent” configurations to
be combined (“diadic” crossover) or, alternatively, by using a
third, “mask” configuration from the population used only
for the domain decomposition. The latter, “triadic” crossover
is used here, similar to the technique suggested in Ref. [62]
for Ising spins, since it is found to perform slightly better for
continuous spins. Genetic diversity is strengthened by re-
stricting the selection of parents to be combined to neighbors
after the population has been arranged in a linear ring [62].
This introduces some degree of geometric “locality” of the
population and allows good solutions to be refined indepen-
dently in different areas of the configuration set. Previous
approaches [20,61,63] have used a fixed total number of
crossover operations per member of the initial population,
followed by a halving of the population by elimination of the
higher-energy solution of each pair of neighboring configu-
rations, and then a reiteration of the remaining population.
This reduces the total effort by removing unpromising solu-
tions and bringing distant parts of the “ring” of solutions
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closer to each other in later stages of the optimization. For
the time being, I will adopt this technique here as well. A
more efficient variant, geared at the detection of hard
samples, is presented below in Sec. IV C. In total, the result-
ing genetic embedded matching (GEM) algorithm proceeds
as follows:

1: procedure GEM(S,C,P,Z,L)
2 initialize {Sf}, k=1,...,S randomly
3: 58S

4:  while s>4 do
5 for c—1,CXs do
6

randomly select pair
(a, B=a+1)of configurations

7 randomly select mask
configuration y# a, 8

{S¢,8F}=BEDCROSSOVER (a.8,)

9: MuUTATE({S 1P,
MuTATE({S?}, P)

10: EMBEDDEDMATCHING ({S?},Z)

11: EMBEDDEDMATCHING ({S£},7)

12: for j—1,L do

13: for i—1,L*> do

14: Si'—h{/h]

Is: SB—iIIR

16: end for

17: end for

18: if H({SY) <H{S%) then

19: S*—8¢ i=1,...,L*

20: end if

21: if H({SP) <H({S?}) then

22: SP—8P i=1,...,L*

23: end if

24 end for

25: for all distinct pairs (a,a+1)

26: it H({S) <H{SH'}) then

27: remove configuration a+1

28: else

29: remove configuration «

30: end if

31: s—s—1

32: end for

33:  end while
34:  output (best of) remaining
configurations

35: end procedure

The BEDCROSSOVER operation performs the BED do-
main decomposition of Sec. III A with respect to the mask
and, for each domain, either swaps all spins between the
parents a and 3, copies domains a— 8 or B> «, or leaves
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the domain invariant, with all possibilities occurring ran-
domly at equal proportions. Mutations are performed by ran-
domly choosing new spin orientations with a probability P.
The resulting offspring are optimized using Z iterations of
EMBEDDEDMATCHING from Sec. II B, followed by L itera-
tions of a local spin quench. The latter is useful since, close
to a minimum where only spin-wave excitations are left,
both approaches converge to the same state, but the spin
quench is much faster computationally. Lower-energy off-
spring then replace their parents. In the implementation used,
each offspring is only compared to the morphologically
closer parent, i.e., the one with a larger optimized scalar
overlap c}“ﬁzmaxREO(,,)EMqﬁfRﬁf, where R?? denotes the

corresponding global rotation matrix, and
1
o= St (10)

is the matrix of overlaps. This maximization is performed by
a singular value decomposition to diagonalize ¢%%, in which
case %P is just the trace of the resulting diagonal qf;f
[40,56]. This form of replacement restriction helps to maxi-
mize genetic diversity [20]. After sC crossovers, the higher
energy instance of each adjacent pair of configurations is
discarded, thus halving the population. The complete process
is repeated until at most four configurations are left, which
form the result of a run.

As will be shown in the next section, this combination of
techniques in the genetic embedded matching method allows
for the determination of (numerically) exact ground states of
reasonably large continuous-spin systems in 2D with high
reliability.

IV. PERFORMANCE

Using probabilistic methods for ground-state searches,
special care is needed to ensure that true ground states are
found. Since for AP hard optimization problems the decision
variant is NP complete, there is no way of definitely distin-
guishing a metastable from a ground state short of an exact
solution of the instance. A general probabilistic approach of
“quality assurance” for the GEM method is outlined and ap-
plied to the 2D XY spin glass in Sec. IV B. In some dynami-
cal approaches, such as local spin-flip Monte Carlo simula-
tions, the specific hardness of a sample shows up in the
behavior of autocorrelation times, to which a simulation run
can in principle react dynamically by increasing the simula-
tion time accordingly. Below in Sec. IV C, it is discussed
whether a similar heuristic for detecting hard samples can be
applied in the GEM approach.

A. Performance and comparison to simulated annealing

Local spin quenches according to Eq. (2) yield states in a
broad range of energies, cf. Fig. 3. For ascribing the ability
to find ground states to a stochastic method one would, in-
stead, require that states of exactly the same energy (up to
machine precision) are found in a sizable fraction p, of at-
tempts (with p,=95%, for instance) and that no states of
lower energy can be found with runs of largely increased
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effort or utilizing other optimization techniques. As is evi-
dent from Fig. 3, this also cannot be said of the embedded
matching approach alone. Figure 5 shows the minimum en-
ergies found in repeated runs of the GEM technique for the
bimodal XY spin glass in 2D with a randomly picked disor-
der realization of size 24 X 24 (which is identical to the re-
alization used in Fig. 3) and a starting population size S
=64. For comparison, this figure also shows the histogram of
repeated runs of an extensive simulated annealing [16,64]
computation with an exponential temperature protocol (a lin-
ear protocol yields very similar results) and a total number of
about 2 X 107 lattice sweeps of single spin flips per run, lead-
ing to an about sixfold runtime as compared to the GEM
computations. As is seen, the GEM runs result in clearly
lower energies than the simulated annealing. Additionally,
the latter still show a sizable spread of the energies found,
whereas the GEM technique appears to yield states of the
same energy. Only on going to much higher energy resolu-
tion, the GEM results are resolved into a small number of
distinct peaks cumulated from runs yielding identical energy
up to (or close to) machine precision, cf. the inset of Fig. 5.
A fourfold increase of the starting population to S=256 leads
to a convergence of all 100 runs to the lowest energy peak to
the right in the inset of Fig. 5. No further increases of the
population size up to S=1024 lead to lower energies such
that, with high confidence, this peak corresponds to the true
ground-state energy of the system. Consequently, it can be
said that runs with S=64 have a probability of about p;
=16% of leading to a ground state. Methods for guaranteeing
high reliability of finding ground states over the distribution
of disorder realizations are discussed below in Secs. IV B
and IV C.

Although, for the given disorder realization, the GEM
technique appears able to find ground states and clearly out-
performs the simulated annealing approach, variations in the
“hardness” of different replica in the random couplings are
known to be large (see, e.g., Refs. [65,66]), and the corre-
sponding variation in the efficiency of the methods should be
taken into account. Since the commonly considered distribu-
tions P(J;;) contain the ferromagnetic lattice with J;;=J,
>0, which is trivially handled by either optimization
method, the behavior of interest can only be either that for
the worst case, which is, however, difficult to assess for the
spin-glass model considered, or rather the average perfor-
mance for the disorder distribution at hand. As a first step in
this analysis, I considered the convergence of the average
minimum energy observed with the computational effort in-
vested. For simulated annealing with Metropolis acceptance
rule, it is known that with logarithmically slow cooling,
ground states will be found in finite (but, of course, very
large) time [67]. Since this cooling schedule is impractical,
however, exponential or power-law cooling curves are used
instead [16,64]. The possibility of different acceptance rules
complicates things further, and it is naturally impossible to
benchmark against all these variants. I restrict myself here to
the probably most commonly used exponential protocol. The
asymptotic form of energy convergence in simulated anneal-
ing of spin-glass systems has been the topic of some debate
in the past [5,25]. Numerically, a power-law convergence,
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FIG. 5. (Color online) Histograms of energies found for a 24
X 24 sample of the bimodal XY spin glass from 100 runs of the
genetic embedded matching approach with a population of size S
=64 (hatched bars, average runtime 700 s on a Pentium IV
2.8 GHz) as compared to simulated annealing runs with a total of
about 2 X 107 Monte Carlo sweeps (solid bars, average runtime
4000 s). The disorder realization is identical to the one considered
in Fig. 3.

(E(T)); ~ E+ AgT %, (11)

for large cooling times T (i.e., the total number of Monte
Carlo sweeps) was found for the 2D Ising spin glass, while,
on the contrary, logarithmic convergence was observed for
the 3D variant [25]. On the other hand, on the basis of mod-
eling (Ising) spin glasses as sets of weakly interacting two-
level systems, it was conjectured that the logarithmic form
would be universal [5]. Here, (-); denotes the average over
disorder. Figure 6 shows the average minimum energy found
from simulated annealing of 1000 samples of size 16 X 16 of
the 2D XY spin glass for annealing times between T
=50 000 and T=3.2X 10° sweeps, compared to the energies
found from GEM runs with population sizes ST between 8
and 128 configurations. The abscissa for the simulated an-
nealing data has been linearly rescaled to result in equal
runtimes for both approaches on a Pentium IV 2.8 GHz (both
algorithms scale linearly in T). The data from simulated an-
nealing can be fitted with reasonable quality to the power-
law form (11), yielding a decay exponent ¢=0.33(36),
whereas a logarithmic form does not adequately describe the
data. This is comparable to the value {=0.25 found for the
2D Ising spin glass in Ref. [25]. Note that the extrapolated
asymptotic ground-state energy E.,.=—-387.45(76) is compat-
ible statistically with the value found from GEM runs al-
ready for the smallest population size S=8 considered. In
fact, the GEM data are constant within statistical errors for
S§=32. The variation of energies found from the GEM tech-
nique can also be described by Eq. (11), resulting in ¢
=2.3(48) (the large statistical error results from the only
minute variation of (E) observed).

The GEM algorithm as presented in Sec. III B involves a
number of parameters which need to be tuned to achieve
these good results. Performance appears to be rather weakly
dependent on the mutation rate, and best results are found for
a rate of about P=2.5%. Much more frequent mutation de-
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FIG. 6. (Color online) Average minimum energy (E(7)); for
1000 samples of size 16X 16 of the bimodal 2D XY spin glass
found from GEM and simulated annealing runs with a total runtime
T (in rescaled units).

stroys the relatively good optimization achieved at interme-
diate stages and decrease the overall performance. Since the
offspring configurations produced by the BED crossover are
still optimal inside of domains, relatively small numbers of
embedded matching and local relaxation steps are found to
be sufficient, Z=15 and £=100 was usually chosen here (cf.
the pseudocode of the algorithm in Sec. III B). The number C
of crossovers per replica determines how well the available
“genetic pool” of original configurations is explored. Beyond
a certain number of crossovers, the population becomes uni-
form and further increases do not improve the probability of
finding ground states. For accessible system sizes C=8—16 is
a good choice. The main tuning parameter of the approach is
the initial population size S, which is changed to accommo-
date the variable hardness of different system sizes, models,
and disorder realizations. It is the only parameter whose in-
crease ultimately guarantees ground states to be found. Note
that the total number of crossovers is 2C(S—4) (assuming
S=2") and hence linear in S. For a given single realization,
computation of true ground states can be guaranteed with
high confidence by tackling the same disorder configuration
with largely increased computational effort (in particular,
say, a fourfold increase in population size S), until no further
change in energy is observed. For the random distribution of
configurations to be investigated, however, a more automatic
(and less computationally expensive) approach is required.

B. Probabilistics of successes

For stochastic optimization methods, arrival at true
ground states cannot be guaranteed. For given input data in
the form of the disorder realization and a choice for the tun-
able parameters, a ground state is found with the success
probability p ({J/;}:T), where T denotes the relevant param-
eters. As was discussed above, by far the most influential
parameter for the GEM approach is the initial population size
S, such that T here restrict considerations to 7={S}. Full
information about the distribution of p; induced by P({J;;})
and the dependency on the algorithm’s parameters would
correspond to a complete understanding of the performance
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FIG. 7. (Color online) Estimated failure probability p;=1-p,
for the GEM technique applied to XY spin-glass samples of size
16X 16 as a function of the computational effort 7=S. The lines
show fits of the form (12) (easy and hard sample) respective (13)
(disorder average) to the data.

characteristics or generalized computational complexity [7].
This computation, however, is impractical due to the high-
dimensional nature of this parameter space: using, e.g., 100
runs to estimate p, for a given set of parameters for 1000
disorder realizations and 100 combinations of parameters
S,Z,... would require 107 ground-state computations for a
single system size. From ps({Jij};T) one could deduce the
perhaps most interesting distribution 7,;,({/;}:p,) of efforts
required for a constant success probability p,.

Figure 7 shows the failure probabilities p,=1-p, for an
“easy” and a “hard” sample of the 2D bimodal XY spin glass
as a function of the population size S=T, compared to the
average failure rate p, over 100 disorder replica. The huge
spread in hardness is apparent: while, for instance, only in 2
out of 100 cases do runs with S=64 fail to find a ground
state for the easy sample, 74% of attempts for the hard
sample end in a metastable state. It is therefore not enough to
fix the run parameters by considering one or two randomly
chosen configurations. For a description of the functional
form of p/T) in Fig. 7, consider performing n statistically
independent runs of length T, with failure probability p,,
and picking the solution of lowest energy as the final answer.
With this prescription, a ground state is not being found only
if all of the runs fail, and the combined failure probability is
thus

PAT=nTy) =pjg°. (12)

Due to the locality constraint in choosing parent configura-
tions for crossover, increasing the initial population size S
=T has essentially the same effect as performing independent
runs. For sufficiently large T, Eq. (12) is hence an excellent
description of p/T) for a single sample. Figure 7 shows fits
of the form (12) to the data for the “easy” and “hard”
samples. There is only a single fit parameter, p}g", corre-
sponding to a measure of hardness of the sample (with re-
spect to the GEM technique). The ensemble average
(p/{J;;}:T)); cannot be expected to follow the same expo-
nential form (12) since, in general, (exp[aT]) # exp[{a)T]. It
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FIG. 8. (Color online) Histogram H(py) of failure probabilities
for 1000 disorder samples for the 2D XY spin glass as a function of
initial population size S. The lines show analytical approximations
discussed below in the main text.

is found, however, that it is well described by the slight
generalization

<pf({Jij};T)>J:App]{,/0Tov (13)

with an additional amplitude A,<1, as is apparent from the
corresponding fit also shown in Fig. 7. Consequently, the
average failure probability decreases more slowly with T
than would be expected from the behavior on single samples.
Note that due to the form (12) it is not appropriate to con-
sider the combination 7/ p, as the “computational effort” of a
sample [66], since this assumes a linear relation between p;
and T.

In view of the results of Fig. 7, it is of interest to inves-
tigate the distribution H(p;) of failure probabilities over dis-
order samples. To this end, the failure probability was
sampled by performing 100 independent runs for each of
1000 disorder samples with run length 7=S=64. The histo-
gram estimating the probability-density function H(py) is
shown in Fig. 8, revealing clearly the breadth of this distri-
bution, reflecting the large spread in hardness already sug-
gested by the data of Fig. 7. From the histogram H(p,), it is
possible by means of Eq. (12) to recover the distribution of
the minimum required runtimes Tmin({Jij} ;Py), corresponding
to the distribution of hardness of samples under the GEM
technique: from the estimate of pA{J;}) for a disorder
sample {J;;} at fixed runtime 7, Eq. (12) implies

gy MPro
Twin({Jh) = Tln o)’ (14)

Figure 9 shows the distribution G(T,,;,) of minimum runt-
imes at failure probability p;;=0.05 thus resulting from the
runs at fixed runtime 7=64 presented in Fig. 8. The breadth
of the distribution is apparent: while the average is around
(Tminys =225, there is a fat tail with some of the 1000 disor-
der configurations featuring a T, as large as 2000. Such
density functions typically occur when considering the ex-
trema of large samples drawn from underlying probability
distributions. Asymptotically, the distribution of extremes is
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FIG. 9. (Color online) Estimated probability-density function
G(T ;) of minimum required runtimes Ty, for 16 X 16 systems of
the 2D XY spin glass to achieve success probability p;=95%. The
dashed line shows a fit of the generalized extreme-value distribution
(15) to the data.

known to be universal, following the form [68]

o\ -1-1/E o\ -lE
G o) = 1<1+§x “) Xexp{—(1+§x ") },

(o g (o

(15)

where the parameter & depends on the tail behavior of the
underlying, primary distribution for large arguments x. De-
pending on &, this form is known as Weibull (£<0), Gumbel
(é€—0), or Fréchet (£>0) distribution, respectively. As is
seen in Fig. 9, it fits the data for 7,;, extremely well, result-
ing in £€=0.270(44), u=115.6(45), and 0=87.7(39) with an
excellent quality-of-fit 0=0.23. Similar distributions of the
Fréchet type have been found for the tunneling times in
Wang-Landau flat-histogram simulations of the Ising spin
glass [66,69]. One might speculate on the origin of the oc-
currence of extreme-value statistics in hardness measures of
spin-glass samples: if, as has been suggested [5], a spin-glass
sample can be described as a set of n=n(L) weakly interact-
ing two-level systems, it appears plausible that the largest
barrier or the slowest relaxation time determines the hardness
of the configuration. Then, the hardness would be the maxi-
mum or minimum of a sample of size n from the underlying
distribution of two-level systems, asymptotically distributed
according to the extreme-value distribution (15). In line with
this argument, it was recently observed [70] that the distri-
bution of relevant barriers in the Sherrington-Kirkpatrick
model follows a Fréchet distribution with a value of ¢
~=().33, rather similar to the form found here.

Given that G, ,(T ;) describes the GEM data so well, it
is worthwhile to use Eq. (12) to reveal the resulting analyti-
cal form of the distribution of failure probabilities, H(p,).
Following standard probability theory [71], density functions
transform as

dT ..
H(ppdp,= Gy . o(Trnin) ?mmdpf, (16)
f

which, using Eq. (12), leads to
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FIG. 10. (Color online) Average effort (T, for finding ground
states with constant success probability p,=95% as a function of
lattice size L?, estimated from 100 disorder configurations per size.
The line shows a fit of the form (18) to the data.

Thnp Inp
H(py) = - —%Ggsﬂ,g(T—@) (17)
pAIn p) Inp;

As is seen from the curves in Fig. 8, this form with the
parameter values &, u, and o given above fits the numerical
distribution H(p,) for the same T=64 data perfectly well
(i.e., the approach is self-consistent). Additionally, however,
it describes independent runs of different lengths to high pre-
cision and hence the form (17) is an excellent description for
general runtimes 7, as indicated by the additional curves in
Fig. 8. Consequently, the three-parameter family of distribu-
tions (15) and the limiting distributions derived via Eq. (12)
form a complete description of the full probability density
pAThT).

While it certainly would be instructive to extend the
analysis of Tp, via the distributions (15) to a scaling analy-
sis of the fit parameters & u, and o with lattice size L, the
huge computational effort would be disproportional. Instead,
I concentrate on the mean required effort (7, as a func-
tion of system size, averaged over a smaller disorder sample
of only 100 configurations. These data for failure probability
pr=5% are shown in Fig. 10 together with a fit to the ex-
pected exponential form

(Toyin)y = Age 10, (18)

which works reasonably well with parameters A;=4.82(26)
and Ly=8.515(89). Increasing the rate of tolerated failures to,
e.g., ps= 10%, merely reduces the prefactor to A;y=3.64(19),
but leaves L, almost invariant. This data brings back to at-
tention the fact that, although the GEM approach works quite
well, and clearly outperforms simulated annealing, it natu-
rally cannot evade the AP-hard nature of the problem en-
forcing an exponential growth of computational effort. To
complicate the matter further, it is well conceivable that the
shape parameter & of Eq. (15) increases with system size, as
was observed in tunneling simulations of spin-glass models
[66]. Since for £&>1/2 the variance of G, , becomes ill-
defined, and for £>1 additionally the mean diverges, this
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would imply that a correct choice of population size S=T for
all disorder configurations becomes impossible beyond a cer-
tain system size.

C. Hardness of samples and refinements

Numerical ground-state computations in (nonpolynomial)
spin-glass systems are subject to two types of “hardness
problems:” the exponential growth of average computational
effort with system size and the large fluctuations in sample
hardness implied by heavy-tailed distributions of the type
(15). While NP hardness means exponential effort for the
worst-case samples, it is clear that (close to) ferromagnetic
(i.e., best case) configurations can be tackled in polynomial
time. Hence, the difference in effort diverges with system
size. While this is true for the set of all possible input data, it
is not clear a priori that the samples receiving non-negligible
weight from the P({/;;}) considered indeed show such spread
as implied by the data of Fig. 9. In this section, I discuss
technical refinements of the GEM technique designed to ad-
dress the problem of large fluctuations in hardness.

1. Effort adaptation

The fixed total number of crossovers C,,,=2C(S—4) per-
formed by the GEM algorithm of Sec. III B is not optimal in
view of the hardness variations observed. Additionally, one
needs to tune C for best performance. It turns out that, in fact,
the number of crossovers can be determined automatically
and on the run. This is done by comparing each pair of
configurations generated by crossover and potential replace-
ment of the parents: if they are too similar, one of them is
removed from the population. The similarity is here again
measured by the optimized scalar overlap §*# resulting from
Eq. (10), using a cutoff g,,,,=1-2D/L>. For an Ising spin
glass, D would correspond to the number of lattice sites
where the two configurations disagree. For the algorithm of
Sec. III B, this means that the loop over c in lines 5 and 24 as
well as the halving step in lines 25-32 are removed, whereas
the following instructions are inserted after line 23:

24: if OVERLAP (a, 8)>1-2D/L? then
25:  remove configuration «

26: s—s—1

27: end if

This modified algorithm is referred to here as ODGEM
(overlap-driven GEM). This prescription ensures maximal
genetic diversity at all times, and only members able to pro-
duce “novel” configurations in crossover are retained in the
population. As a consequence, the total number of crossovers
is no longer fixed, but depends on the used disorder configu-
ration. It appears plausible that hard disorder samples with
many conflicting solutions close to the global minimum re-
tain genetic diversity longer than easy samples. Figure 11
shows a correlation plot between the failure probabilities p,
in the original GEM and the total number of crossovers Ci
in the ODGEM approach (which is proportional to the total
computational effort). The Pearson correlation coefficient

[71]
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FIG. 11. (Color online) Correlation diagram of failure probabili-
ties p; for GEM runs of length $=64 and the total number of
crossovers Cy,, in ODGEM (overlap-driven GEM) runs with D
=0.128 for 16X 16 disorder samples. The vertical line shows the
total number C,,,=960 of crossovers for the GEM runs.
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Px.y (19)
is found to be ppj"ctol=0'625(15)’ indicating clear but not
perfect correlation. As is seen from Fig. 11, most samples
with high failure rates in GEM receive an increased effort in
ODGEM, and only a few cases are missed. The choice of the
overlap cutoff D must ensure that when comparing configu-
rations genetic “equality” is assumed only when no relative,
nontrivial excitation exists. Values of D=0.1 to D=1 are
found appropriate here.

Since the ODGEM method detects a significant propor-
tion of hard samples, the distribution of the total number C,,
of crossovers acquires itself a heavy tail, reflecting the hard-
ness distribution described by Eq. (15). This empirical distri-
bution is found to be well modeled by the extreme-value
shape (15) with & close to zero, i.e., a Gumbel form. As is
evident from the data presented in Fig. 12, this leads to an
improved average performance of the ODGEM compared to
the GEM technique, increasing with the total effort invested.
Compared to GEM, ODGEM invests more effort in the hard
samples and less in the easy ones, as appears adequate. Di-
rect inspection of the histogram H(p/) of failure probabilities
for the ODGEM method reveals that, indeed, the number of
instances with large failure probabilities are dramatically re-
duced as compared to the GEM data of the same population
size presented in Fig. 8.

2. Hardness indicators

The possibility of deciding about sample hardness a priori
could largely increase the efficiency and reliability of the
GEM (and any other ground-state search) method. It is an
open problem whether for spin-glass systems there are mi-
croscopic sample properties significantly more easily com-
putable than the ground state itself which feature a strong
correlation to sample hardness (with respect to a given
method) [7,72,73]. To investigate this question in the context
of the GEM approach and the 2D bimodal XY spin glass, I

066706-12



GENETIC EMBEDDED MATCHING APPROACH TO GROUND...

analyzed correlations between the failure probabilities p; and
a large number of observables of the disorder sample, the
candidate ground states found, and properties of the popula-
tion of configurations in the genetic algorithm. A number of
resulting correlation coefficients as estimated for 16X 16
samples from GEM and ODGEM runs with population size
S§=64 are collected in Table I.

Regarding easily computable properties of the disorder
realizations at hand, one finds some moderately significant,
positive correlation between pyin GEM runs and the number
of frustrated plaquettes, indicating increased hardness for
highly frustrated samples. Vice versa, an increasing average
size of unfrustrated regions leads to more and more success
in finding ground states. Apparently, these correlations are
successfully taken into account by the modified algorithm
ODGEM, where no significant correlations between p; and
sample properties are left. Also, some properties of the com-
puted (candidate) ground states correlate with success prob-
abilities. In particular, a larger ground-state energy, indicat-
ing increased frustration, is accompanied by a larger number
of failures. Also, larger than average values of the configu-
rational rms chirality « [74],

2
KL=, ( > sgn Ji[S: X Sj]z) , (20)
0, \G,)eq,
as well as the noncollinearity Q [75],
Q'L 2=2 2 |SixS;P (21)

a, (.ped,

correlate with larger failure probabilities and hence indicate
harder samples for the method. Note that the definition (20)
is specific to the case of planar spins. For the Heisenberg
model, the chirality is, instead, cubic in the spin variables
[76]. Again, such correlations are not (highly) significant for
the ODGEM technique, indicating that the corresponding
samples automatically receive higher computational effort
there.

The largest correlations with the failure probability are
seen for properties of the population of spin configurations
inside of the GEM or ODGEM runs. The rather strong in-
verse correlation between the average optimized overlap
(g*P) of configurations and py in GEM runs shows that a
homogeneous (i.e., large overlap) population occurs for a
clear-cut, more easily accessible ground state. Such homoge-
neity also implies that larger domains are being identified in
the BED decomposition. On the contrary, a large number of
successful replacements of parents by better offspring indi-
cates stronger competition of candidate ground states, result-
ing in more failures. These correlations related to population
remain, although weakened, in the maximum-diversity ver-
sion ODGEM. Consequently, devoting additional effort to
disorder configurations singled out by these population char-
acteristics in ODGEM runs will additionally reduce failure
rates for hard samples, as I now discuss.

3. Repeated runs

Allocating such additional effort to allegedly hard
samples typically means performing additional, statistically
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FIG. 12. (Color online) Average failure probabilities for the
GEM and ODGEM techniques on 16 X 16 samples as a function of
the total number C,,, of crossovers performed. The lines show fits of
the functional form (13) to the data.

independent runs to finally pick the lowest-energy state
found as the final result. As discussed above in Sec. IV B,
however, the decrease in failure probability expected from
such a combination of several runs as described by Eq. (12)
is identical to the effect of performing a single computation
with a larger population (and this stays true for the modified
ODGEM technique, at least to a good approximation). In
contrast to single, more expensive runs for all disorder real-
izations, however, repeated runs allow to treat individual re-
alizations differently, in accord with the heavy-tailed distri-
bution of sample hardness observed in Fig. 9.

Even disregarding the use of the hardness indicators dis-
cussed in the previous section, however, it turns out to be
beneficial to replace runs of length 7 by a number n of
shorter runs of length 7/n: within the range of validity of Eq.
(12), the total probability p, not to find the ground state
remains unchanged. For an easy sample with small p/, all but
a small fraction of the n runs will end with a state of the
same (namely the ground state) energy. For hard samples
with larger p;, however, states with different energies will
result from a sizable fraction of runs, even if none of them is
a ground state. In other words, the structure of low-lying
excited states typically results in the appearance of a variety
of energies for samples where a ground state is not found. By
reacting to these events with additional runs for the affected
samples until the same minimum energy has been found a
certain number n, of times, the average failure probability
(py) can be further decreased.

To demonstrate the power of this extension, n=3 runs of
length 7=S5=32 for 1000 samples of size 16 X 16 were per-
formed. For 722 samples, all three runs ended with the same
minimum energy, which was consequently accepted as esti-
mate for the ground-state energy. For the remaining replica,
an additional run with §=32 was performed, which settled
74 of the “questionable” cases. This scheme was iterated
until for all 1000 samples the state of lowest energy had been
found ny=3 times. The average effort for this computation
corresponded to S= 115 (i.e., 3.6 runs of length S=32), but
the total number of missed ground states corresponded to
that of runs with S=240 (or 7.5 runs of length S=32). This
type of computation can, of course, be favorably combined

066706-13



MARTIN WEIGEL

TABLE I. Estimated correlation coefficients between the failure
probabilities p; in GEM and ODGEM runs and various observables
of the disorder realizations, the actual ground-state configurations
found, and the population of configurations within the genetic algo-
rithm. (AF stands for antiferromagnetic.)

Observable PGEM PODGEM

No. AF bonds 0.020(36) 0.019(34)
No. frustrated plaquettes 0.104(33) —-0.028(33)
Size of unfrust. clusters —-0.129(38) -0.012(37)
Energy 0.226(33) 0.061(34)
Magnetization 0.021(34) 0.024(36)
Chirality 0.137(34) 0.001(33)
Noncollinearity 0.266(33) 0.101(33)
Plain overlap —-0.087(31) 0.059(32)
Optimized overlap —-0.414(25) —-0.339(28)
BED domain size —-0.383(22) 0.237(34)
Parent replacements 0.328(29) 0.297(34)

with the correlation results of Table I to perform a certain
number of additional runs for samples where certain observ-
able values indicate especially large failure probability p.
Since the improvement effected by this addition depends on
the structure of low-lying excited states of the model, it un-
fortunately cannot be quantified in general.

V. CONCLUSIONS

I have presented an optimization heuristic for finding nu-
merically exact ground states of two-dimensional spin-glass
systems with continuous spins with high reliability. Embed-
ding Ising spins into the continuous rotators, this exponen-
tially hard optimization problem is being related to the poly-
nomial problem of finding Ising ground states on planar
graphs via Edmonds’ algorithm [43] for solving minimum-
weight perfect matching problems. Due to a history depen-
dence of effective coupling constants, this technique exhibits
metastability on a low-energy subset of the metastable states
of a single spin-flip zero-temperature quench. In contrast to
simulated annealing and similar techniques, however, em-
bedded matching has the crucial advantage of being strictly
downhill in energy. To find true ground states, embedded
matching is inserted as a minimization procedure in a genetic
algorithm specially tailored to the spin-glass ground-state
problem. The essential component is here given by a prop-
erly chosen crossover operation exchanging automatically
determined domains of rigidly locked spins between the par-
ent replica, thus preserving the good optimization achieved
at intermediate stages inside of domains and effectively al-
lowing the method to directly operate on the manifold of
metastable states.
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This combination of techniques resulting in the genetic
embedded matching (GEM) method outperforms general-
purpose approaches such as simulated annealing by orders of
magnitude: a success probability p,=1% could not be
achieved at all with reasonable computational effort with
simulated annealing runs for the 16 X 16 bimodal XY samples
considered for performance comparison. Due to the generally
strong corrections to scaling present in spin-glass systems,
the extension in accessible system sizes effected by the GEM
approach over general-purpose techniques turns out to be
crucial for the understanding of the asymptotic behavior of
the spin-glass phase, cf. Refs. [39,40]. The distribution of
success probabilities of the GEM technique can be under-
stood from the decomposition theorem (12) of failure prob-
abilities. The thus estimated distribution over disorder replica
of minimum required runtimes or population sizes is per-
fectly described by a Fréchet distribution known from
extreme-value theory, which is plausible given that sample
hardness is determined by the hardest of a number of effec-
tive two-level systems describing the energy landscape of a
disorder realization. Due to the heavy tail of this distribution,
the exponential divergence of average computational effort
with system size expected from nonpolynomial optimization
problems is accompanied by an increasing spread in sample
hardness impeding an appropriate choice of optimization pa-
rameters common to all disorder samples. The variant ap-
proach ODGEM automatically maximizing genetic diversity
by monitoring configurational overlap, reduces the severity
of this spread by devoting additional effort to hard samples.
Hard samples can also be detected by indicator observables
of the disorder and low-energy configurations as well as the
population in the genetic algorithm in order to decrease the
failure probability in these cases. The decomposition prop-
erty (12) finally allows to break up computations in smaller
units which, besides allowing to further reduce the average
effort required for a given success probability, makes the
method ideally suitable for computations on parallel work-
station and Beowulf clusters.

Note that for systems with degenerate ground states, the
GEM and ODGEM methods as nonequilibrium techniques
do not yield these different states with probabilities propor-
tional to the corresponding Boltzmann factors, such that in
these cases an additional postprocessing of the states found
would become necessary [77]. Recent evidence suggests,
however, that such degeneracies might be very unusual in
disordered systems with continuous spins [39,40]. The per-
formance analysis presented here focused on the bimodal XY
spin glass on the square lattice. The method straightfor-
wardly generalizes to any other nearest-neighbor O(n) spin
model (1) on planar graphs and to arbitrary disorder distri-
butions. Specifically, the case of Gaussian bond distribution
can be treated with similar efficiency. Due to the use of em-
bedded matching as minimization component, the present
form of the technique is limited to planar, two-dimensional
lattices and the case of zero field. Other minimization tech-
niques might be used in lieu of embedded matching inside of
the genetic algorithm to tackle spin glasses in three dimen-
sions or including magnetic fields.
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